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ABSTRACT

The “Viareggio 2013 Trial” is a hyperspectral dataset obtained from multiple overflights of the Italian city of
Viareggio. Careful management of panels and vehicles in the scene enabled the development of valuable ground
truth information. One pair of overflights occurred at different times on the same day, and another pair took
place over different days. These data were used to compare and evaluate a variety of automated approaches for
discovering anomalous changes. Co-registration of the images is acknowledged to be imprecise, so part of the
challenge is to identify anomalous changes in a way that is robust to this misregistration.

Keywords: anomalous change detection, hyperspectral imagery, remote sensing, local co-registration adjust-
ment, elliptically-contoured distribution

1. INTRODUCTION

Most things are more than one thing.
— Maxwell Brian

Like many things, change detection is more than one thing. For change delineation, the aim is to identify with
some precision the location and extent of a known change (e.g., after a flood, which streets are underwater?). For
anomalous change detection, the change is presumed rare but the nature of that change is not specified. Change
detection becomes more complicated with more than two images,1–4 but even with only two images, there are
multiple scenarios. One of the images might be considered a “reference” against which changes are sought in the
other image. Or vice versa. Or, the problem may be more symmetrical: changes are sought without selecting
either of the images as a reference. For two images X and Y, we can use a shorthand for these three cases: X→Y,
Y→X, and X↔Y.

A variety of algorithms for anomalous change detection have been developed, including chronochrome (CC),5

covariance equalization (CE),6 multivariate alternation detection (MAD),7 and hyperbolic anomalous change
detection (HACD).8 See Acito et al.9 for a survey from a Gaussian point of view, and Ref. [10] for a much broader
survey. One can extend these algorithms to elliptically-contoured (EC) distributions,11 and more adaptive
machine learning-based methods have also been developed.12–14 A general machine learning framework was
proposed in Ref. [15]; this framework distinguishes between pervasive differences and anomalous changes, and
treats them as two classes in a binary classification problem. A resampling scheme can be used to provide an
anomalous change pixel for every pervasive difference pixel, which enables matched-pair machine learning16–18

approaches to be taken. In this machine learning framework, kernel-based methods19–22 have often proved useful.

2. DATASET

The Viareggio 2013 Trial23,24 contains hyperspectral images form an airborne collect, taken in Viareggio, Italy,
in 2013. Extensive ground truth is provided along with the imagery data, and the dataset has proved useful
for investigating algorithms for target detection25,26 and for change detection.27,28 The change detection data
consists of three hyperspectral images, which for simplicity of exposition we will call A, B, and C. (The longer
names for these images are D1F12H1, D1F12H2, and D2F22H2, respectively.24) Two of the images (A and B)
are taken on the same day an hour apart and a third image (C) is taken on the following day. The images
are 450×375 pixels with 511 spectral channels in the visible and near infrared (400-1000 nm). Change maps



Figure 1. RGB images A, B, and C; obtained from channels 64, 32, and 22 of the spectrally binned imagery. Middle panels
are close-ups of a particularly busy part of the parking lot, below and to the right of the center of the full image. Lower
panels correspond to the inset-image change masks for A→C, C→A, and A↔C, respectively; each rectangle corresponds
to a single object-level change.



are provided for the four asymmetric scenarios A→B, B→A, A→C, and C→A (where X→Y corresponds to
“reference” image X and “test” image Y). Note that the A→B change map includes what is new in image B that
is not present in A; the B→A map includes what was removed from B but was present in A. We will also consider
the two symmetric change scenarios, A↔B and A↔C, with the change maps derived from an “or” operation
applied to the two asymmetric change maps.

The Viareggio change masks are object based. Rather than define the specific pixels at which changes have
occurred, each change is associated with a small rectangle inside of which a single change has occurred. The
change can be anywhere from subpixel to a few pixels in extent, but is presumed to be contained entirely within
the rectangle. If a change detection algorithm finds a change anywhere within the rectangle, it counts as a
successful detection. If it finds multiple changed pixels within a single rectangle, it gets credit only for one
detection. Detections observed outside the rectangles are false alarms, and these are counted on a pixel-wise
basis.

3. EXPERIMENTS

For this study, we apply a variety of anomalous change detection algorithms to the Viareggio dataset. We
measure performance in terms of false alarms and detections. The variation of detection rate (DR) versus false
alarm rate (FAR), as a detection threshold is varied, leads to the widely used receiver-operator characteristic
(ROC) curve. Since we are most concerned with the low false alarm rate regime of the ROC curve, we will focus
on a single statistic: the false alarm rate at the threshold that provides a detection rate of one half (which we
call FAR@DR=0.5).

We note that Wu et al.28 recently performed a change detection study on the same imagery. That study
considered both the A↔B and A↔C changes (though not the uni-directional changes: A→B, B→A, A→C, or
C→A), and compared a fairly wide range of algorithms including RX, CC, HACD, subpixel-HACD,29 and their
own slow feature analysis (SFA)30 – the latter two of which they found performed the best. Direct comparisons
with our study, however, are hampered by some differences in how performance is measured. Although the
authors report area under the ROC curve (AUC), which unfortunately puts most of the weight in the high false
alarm rate regime of the curve, they also provide full ROC curves for some of their experiments, and based
on these curves, FAR@DR=0.5 values appear to be 0.02 or higher. Also, it is not clear that their paper treats
detections in an object-based way; if they require pixel-wise detections for the full area that defines where the
anomalous changes are located, then they will report much lower performance than their algorithms actually
achieved.

3.1 Comparison of pixel-wise algorithms

We begin with a comparison of three standard pixel-wise algorithms: straight anomaly detection on stacked
pixels (RX), chronochrome (CC), and hyperbolic anomalous change detection (HACD). In later sections, we will
extend these baseline implementations to include other improvements, and with those improvements in place,
we can revisit this comparison.

With X and Y as the two images of interest, we have vector-valued pixels x ∈ Rdx and y ∈ Rdy , with dx and dy
the number of spectral channels in X and Y, respectively. Let µx and µy correspond to the mean values of x and

y, and let Cxx and Cyy be the covariance matrices associated with x and y. That is: Cxx =
〈

(x− µx)(x− µx)T
〉

and similarly for Cyy. Further, define a cross-covariance Cxy =
〈

(y − µy)(x− µx)T
〉
. It is useful to define a

“stacked” vector

z =

[
x
y

]
(1)

for which

µz =

[
µx
µy

]
and Czz =

[
Cxx CT

xy

Cxy Cyy

]
. (2)

In terms of these expressions, we can define a family of quadratic covariance-based anomalous change detectors8

that describe an “anomalousness of change” for a given pixel pair (x,y):

A(x,y) = ξz − βxξx − βyξy (3)



Algorithm βx βy A↔B A→B B→A
RX 0 0 0.005301 0.005693 0.004870
CC 0 1 0.010089 0.015070 0.026578
CC 1 0 0.004568 0.002264 0.002085

HACD 1 1 0.001650 0.001860 0.003558

Algorithm βx βy A↔C A→C C→A
RX 0 0 0.008265 0.003993 0.025474
CC 0 1 0.010038 0.021247 0.070802
CC 1 0 0.052787 0.001893 0.002458

HACD 1 1 0.004216 0.006904 0.003788

Table 1. Comparison of the baseline variants of standard pixel-wise change detection algorithms. The tabulated quantity
is FAR@DR=0.5, that is: the false alarm rate at the threshold for which half of the targets are detected. Smaller values
are better. While we show the baseline results here, a modified version of this table will be presented in Table 7 for more
advanced implementations of these algorithms.

where

ξz = (z− µz)
TC−1zz (z− µz), (4)

ξx = (x− µx)TC−1xx (x− µx), (5)

ξy = (y − µy)TC−1yy (y − µy). (6)

Here, βx = βy = 0 corresponds to the ordinary RX-style anomalousness31 of the stacked pixel z. Choosing
βx = βy = 1 leads to the hyperbolic anomalous change detector (HACD).15 Both of these detectors are symmetric
and make no distinction between X and Y in terms of which image is “reference” and which is changed with
respect to that reference (in our shorthand notation, these algorithms are designed for the X↔Y scenario). The
chronochrome (CC) detector5 is an asymmetric detector, treating X as the “reference” image so that it is the
X→Y scenario that is addressed, and here βx = 1 and βy=0. We can reverse this and take βx = 0 and βy = 1;
this would correspond to the Y→X scenario.

Table 1 shows the results of these algorithms applied to the Viareggio dataset. For the symmetric changes
(A↔B and A↔C), we find that the symmetric HACD algorithm achieves the fewest false alarms. For the directed
(asymmetric) changes, the CC algorithm (in particular, the forward CC algorithm given by βx = 1 and βy = 0)
achieves the lowest false alarm rate in three of the four cases, and is competitive with HACD in the fourth case
(A→B). In what follows, unless otherwise noted, we will be using the HACD algorithm as the base pixel-wise
anomalous change detector.

3.2 Local Co-Registration Adjustment (LCRA)

One of the most pernicious of the pervasive differences in multi-temporal imaging is misregistration. This occurs
when correspondence between pixel location in an image and scene location on the ground is not consistent from
image to image. Thus, the same pixel location can refer to different locations in the scene. It is clear that, for
change detection purposes, it is desirable to co-register images as accurately as possible. But there will always
be some residual misregistration error. The LCRA algorithm32,33 provides a way to improve change detection
performance by making local adjustments. These local adjustments are made to minimize the measure of
anomalous change at each pixel; although the adjustments may not be accurate in the direct sense of improving
the actual co-registration, they can lead to more accurate change detection results. Using LCRA requires
estimating the magnitude of residual misregistration error (RMRE),34 though in this work, we consider a range
of radii.

As defined in Sec. 3.1, consider the two images of interest X and Y with dx and dy spectral channels,
respectively. At the image position indexed by (k, l), we write the vector-valued pixels as x = Xk,l ∈ Rdx and
y = Yk,l ∈ Rdy . Our goal is to produce an “anomalousness” image A in which each scalar-valued pixel Ak,l



represents how anomalous the change is at the position (k, l). For pixel-wise ACD algorithms, we can write the
anomalousness at (k, l) in terms of a function A(x,y) that depends only on the pixel values at (k, l):

Ak,l = A(Xk,l,Yk,l). (7)

For changes X→Y, LCRA considers for each pixel in Y a window about the corresponding pixel in X, and chooses
the pixel in this window that gives the lowest anomalousness.∗

Ak,l = min
(m,n)∈W

A(Xk+m,l+n,Yk,l) (8)

Here, A is the anomalousness function provided by the underlying pixel-wise ACD algorithm, and W is a set of
integer pairs defining the optimization window. For changes X←Y, we run the window over the pixels in Y.

Ak,l = min
(m,n)∈W

A(Xk,l,Yk+m,l+n) (9)

And for the symmetric case X↔Y, we have the SLCRA formula:

Ak,l = max

{
min

(m,n)∈W
A(Xk,l,Yk+m,l+n), min

(m,n)∈W
A(Xk+m,l+m,Yk,l)

}
. (10)

The residual misregistration of the Viareggio images is evident from looking at the images themselves, and
as Fig. 2 and Table 2 both show, the performance of anomalous change detection is substantially improved by
implementing LCRA. For both same-day changes A↔B and next-day changes A↔C, we see improvements out
to r = 5 pixels, which provides a measure of the effective misregistration of the image pairs.

As Table 2 shows, for the symmetric change problems A↔B and A↔C, the symmetric SLCRA in Eq. (10) is
generally better than the uni-directional LCRA algorithms in Eq. (8) and Eq. (9). For the directional changes,
on the other hand, Table 3 shows that LCRA outperforms SLCRA.

We remark that Wu et al.28 also considered LCRA in their Viareggio change detection study, but they only
considered a radius of 1, and found that LCRA sometimes helped and sometimes did not. Given that we found
improvements out to much larger radii, it seems that they may be missing the full utility of LCRA for this
dataset.

Given the large radii at which LCRA minimized false alarm rates, a case can be made for more aggressive co-
registration (e.g., as proposed by Zelinski et al.35) before deploying anomalous change detection. As long as there
is some residual misregistration, then LCRA can still be helpful, but in general we expect better performance
(and more efficient computation) when that residual misregistration is small.

3.2.1 Comparison of square and circular windows

The window used in LCRA need not be square, and since one does not expect misregistration to be aligned with
pixel axes, there is an intuitive preference for circular-shaped windows. In Table 4, we compare the performance
of LCRA using circular and square windows, and although we did not observe substantial differences between
them in terms of performance at optimal window size, we do note that circular windows often achieve better
performance at small radii, which is at least preferable from a computational standpoint.

3.3 Non-Maximal Suppression (NMS)

For non-maximal suppression, the anomalousness values are modified based on the local neighborhood (defined
in terms of a window W, which for our experiments was a 5×5 square) of anomalousness values. Each pixel value
is compared to the maximum pixel value in its neighborhood. If it is equal to that maximum, then it is retained;
if it is smaller than that value, then it is suppressed:

A∗k,l =

{
Ak,l if Ak,l = max(m,n)∈W Ak+m,l+n,
Amin otherwise

(11)

∗By the way, Eq. (2) and Fig. 3 in Ref. [32] have this backwards.



A↔B
window
radius SLCRA SLCRA+NMS LCRA LCRA+NMS rev-LCRA rev-LCRA+NMS

0 0.001632 0.000524 0.001632 0.000524 0.001632 0.000524
1 0.000518 0.000208 0.001435 0.000578 0.003311 0.000977
2 0.000208 0.000107 0.002263 0.000929 0.002496 0.000995
3 0.000071 0.000030 0.000226 0.000149 0.002359 0.001662
4 0.000048 0.000006 0.000083 0.000036 0.002621 0.001644
5 0.000095 0.000012 0.000089 0.000006 0.003359 0.002347
6 0.000095 0.000012 0.000256 0.000006 0.005086 0.004515
7 0.000095 0.000012 0.000423 0.001418 0.008308 0.004217
8 0.000089 0.000012 0.000709 0.002835 0.008844 0.004401

A↔C
window
radius SLCRA SLCRA+NMS LCRA LCRA+NMS rev-LCRA rev-LCRA+NMS

0 0.004031 0.000617 0.004031 0.000617 0.004031 0.000617
1 0.003623 0.000569 0.006887 0.001282 0.003743 0.000641
2 0.001940 0.000365 0.011631 0.002815 0.002605 0.000515
3 0.000826 0.000228 0.013086 0.005785 0.001683 0.000425
4 0.000593 0.000150 0.023741 0.013493 0.001210 0.000252
5 0.000479 0.000084 0.020303 0.017063 0.000982 0.000228
6 0.000491 0.000096 0.023303 0.025130 0.000886 0.000192
7 0.000437 0.000084 0.025142 0.025028 0.000934 0.000180
8 0.000443 0.000138 0.025405 0.024274 0.001030 0.000180

Table 2. False alarm rate at DR=0.5 for various LCRA window sizes, without and with non-maximal suppression (sup-
pression diameter is 5 pixels). Here we exclusively analyze HACD, after using CCA to reduce the dimension to 20. The
SLCRA data is plotted in Fig. 2
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Figure 2. False alarm rate at DR=0.5 for various LCRA window sizes, without and with non-maximal suppression
(suppression diameter is 5 pixels). Here we exclusively analyze HACD, after using CCA to reduce the dimension to 20.
This same data is shown in Table 2.



A→B
radius LCRA LCRA+NMS SLCRA SLCRA+NMS

0 0.001842 0.000570 0.001842 0.000570
1 0.000398 0.000190 0.000725 0.000256
2 0.000101 0.000048 0.000475 0.000160
3 0.000018 0.000018 0.000368 0.000083
4 0.000012 0.000006 0.000428 0.000071
5 0.000006 0.000000 0.000458 0.000065
6 0.000006 0.000000 0.000452 0.000065
7 0.000006 0.000000 0.000464 0.000065
8 0.000012 0.000000 0.000517 0.000071

A→C
radius LCRA LCRA+NMS SLCRA SLCRA+NMS

0 0.006922 0.001012 0.006922 0.001012
1 0.003672 0.000673 0.006225 0.001024
2 0.001291 0.000357 0.003523 0.000655
3 0.000405 0.000107 0.002196 0.000470
4 0.000274 0.000060 0.001899 0.000357
5 0.000196 0.000036 0.001756 0.000321
6 0.000214 0.000036 0.001714 0.000315
7 0.000190 0.000036 0.001625 0.000298
8 0.000220 0.000048 0.001714 0.000423

B→A
radius LCRA LCRA+NMS SLCRA SLCRA+NMS

0 0.003356 0.000909 0.003356 0.000909
1 0.000689 0.000279 0.001461 0.000493
2 0.000119 0.000065 0.000499 0.000172
3 0.000036 0.000006 0.000303 0.000077
4 0.000036 0.000006 0.000285 0.000071
5 0.000089 0.000012 0.000517 0.000083
6 0.000089 0.000012 0.000511 0.000083
7 0.000089 0.000012 0.000505 0.000071
8 0.000089 0.000012 0.000487 0.000083

C→A
radius LCRA LCRA+NMS SLCRA SLCRA+NMS

0 0.003806 0.000591 0.003806 0.000591
1 0.001855 0.000364 0.003162 0.000543
2 0.000895 0.000215 0.001641 0.000346
3 0.000328 0.000101 0.000776 0.000215
4 0.000292 0.000054 0.000662 0.000161
5 0.000268 0.000036 0.000543 0.000137
6 0.000310 0.000054 0.000519 0.000149
7 0.000262 0.000048 0.000680 0.000167
8 0.000233 0.000054 0.000662 0.000167

Table 3. False alarm rate at DR=0.5 for various LCRA window sizes, without and with non-maximal suppression (sup-
pression diameter is 5 pixels). Here we use HACD, after using CCA to reduce the dimension to 20. Note that for these
asymmetric change problems, LCRA outperforms SLCRA.



A↔B: Circular window
radius of area of
window window SLCRA SLCRA+NMS

0 1 0.001632 0.000524
1 5 0.000518 0.000208
2 13 0.000208 0.000107
3 29 0.000071 0.000030
4 49 0.000048 0.000006
5 81 0.000095 0.000012
6 113 0.000095 0.000012
7 149 0.000095 0.000012
8 197 0.000089 0.000012

A↔B: Square window
radius of area of
window window SLCRA SLCRA+NMS

0 1 0.001632 0.000524
1 9 0.000423 0.000179
2 25 0.000101 0.000042
3 49 0.000071 0.000018
4 81 0.000101 0.000018
5 121 0.000095 0.000012
6 169 0.000089 0.000012
7 225 0.000089 0.000012
8 289 0.000113 0.000018

A↔C: Circular window
radius of area of
window window SLCRA SLCRA+NMS

0 1 0.004031 0.000617
1 5 0.003623 0.000569
2 13 0.001940 0.000365
3 29 0.000826 0.000228
4 49 0.000593 0.000150
5 81 0.000479 0.000084
6 113 0.000491 0.000096
7 149 0.000437 0.000084
8 197 0.000443 0.000138

A↔C: Square window
radius of area of
window window SLCRA SLCRA+NMS

0 1 0.004031 0.000617
1 9 0.002767 0.000497
2 25 0.001186 0.000293
3 49 0.000605 0.000150
4 81 0.000497 0.000102
5 121 0.000461 0.000090
6 169 0.000371 0.000096
7 225 0.000419 0.000138
8 289 0.000437 0.000132

Table 4. Comparison of circular to square windows (see Fig. 3) for SLCRA and SLCRA+NMS applied to the symmetrical
change detection scenarios.

Figure 3. For a window of radius 5, a square window has an area of 121 pixels, while a circular window has an area of 81
pixels. (See Table 4 for a comparison of SLCRA performance with circular and square windows.)



where Amin is the minimum of all the anomaly values over the whole image. Since false alarms tend to occur in
clumps, this approach suppresses all but the most anomalous pixel in the clump. Of course, if there were two
actual changes in the same 5x5 window, one of them would be suppressed, and non-maximal suppression would
be detrimental to performance. The choice of window size is thus driven by how far apart the actual changes
are presumed to be.

We observe that NMS reduces false alarm rates often by a factor of over five. This is dramatic, at least on
paper. One could quibble over whether it would actually help human analysts ultimately identify the interesting
changes, however, because the analyst will also be inclined to discount clumps of false alarms, and will not
necessarily investigate each one independently. But even in that case, if one is providing the analyst with, say,
a “top ten” list of potentially interesting anomalous changes, NMS can be used to avoid putting anomalies from
the same clump into that list.

3.4 Canonical Correlation Analysis (CCA)

CCA is a dimension reduction scheme that is similar in flavor to Principal Components Analysis (PCA), but
where PCA identifies linear combinations of components that maximize the variance of a single vector-valued
random variable, CCA instead finds linear combinations that maximize the correlation between pairs of vector-
valued random variables.

We can illustrate the concept by considering just the first component in a CCA analysis. Choose unit
vectors a and b so that corresponding pixels x and y from the two images, are transformed to scalar values
aTx and bTy. The idea is to choose these transformations so as to maximize the correlation of the scalars:〈

[aT(x− µx)][bT(y − µy)]
〉

= aT
〈

(x− µx)(y − µy)T
〉
b, the solution of which can be expressed in terms of

the left and right eigenvectors of the cross-covariance
〈

(x− µx)(y − µy)T
〉
. The relationship of CCA to CE6

and MAD7 is described in Ref. [8]. (Note that the slow features in Slow Feature Analysis, as applied to pairs of
images,30 are essentially the canonical components of CCA.)

By finding linear combinations of spectral channels that maximize the correlation of two multispectral or
hyperspectral images, and in particular that maximize this correlation on average over the whole image, the
effect is to suppress pervasive differences between the images, and thereby to make the (rare) anomalous changes
stand out in greater relief.

As Fig. 4 shows, CCA can be used to reduce the dimension considerably, and at virtually no cost in terms
of change detection performance; in some cases, it can improve performance. As a rule, we recommend CCA
as a preprocessing step in change detection, because even when it doesn’t improve performance, it reduces
computational cost. For most of the analysis in this manuscript, we used CCA to reduce the dimension to 20
(empirically chosen).

3.5 Preprocessing: de-striping, noise whitening, and spectral binning

As outlined in Fig. 7 of Ref. [24], various levels of preprocessing were applied to the original hyperspectral data
in the Viareggio 2013 Trial dataset, leading to four variants of the image data being provided to users. The first
stage is a de-striping (ds), and it is applied for all of the datasets. A second stage is a noise whitening (nw)
step. Finally, both the ds and nw variants of the data are provided both at full (ful) spectral resolution (511
channels), and with the spectral data binned (bin) into 127 channels. Thus the four variants are: ds-ful, nw-ful,
ds-bin, and nw-bin. Although these may result in substantial differences for direct target detection, we observe
in Table 5 that they have relatively little effect on anomalous change detection performance. For the day-apart
A↔C changes, the noise whitening does seems to help somewhat, and an improvement is also observed in the
hour-apart A↔B changes, but it is very small. Since we find that using CCA to reduce dimension (even as low
as 20 channels) is often helpful (and certainly speeds up the computation), it is not surprising that the spectrally
binned data, which reduces the 511 channels to 127 channels, does not suffer observable information loss in the
context of anomalous change detection.
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Figure 4. Canonical Correlation Analysis (CCA) is used to reduce the dimension of the hyperspectral data before change
detection is applied. The false alarm rate (vertical axis) is plotted against the dimension (horizontal axis) for both the
binned (127 channels) and the full (511 channels) hyperspectral images. It is evident in (a,b) that reducing the dimension
to 20 leaves the HACD performance intact, and in (c,d) we see that dimension reduction substantially improves the
performance, reducing the false alarm rate by roughly a factor of ten.

CCA=20 A↔B A↔C
spectral noise
channels whitening SLCRA SLCRA+NMS SLCRA SLCRA+NMS

127 - 0.000048 0.000006 0.000593 0.000150
127 yes 0.000071 0.000012 0.000329 0.000102
511 - 0.000042 0.000006 0.000479 0.000120
511 yes 0.000066 0.000012 0.000347 0.000090

w/o CCA A↔B A↔C
spectral noise
channels whitening SLCRA SLCRA+NMS SLCRA SLCRA+NMS

127 - 0.000048 0.000006 0.000611 0.000138
127 yes 0.000071 0.000012 0.000365 0.000102
511 - 0.000042 0.000006 0.000485 0.000114
511 yes 0.000048 0.000012 0.000359 0.000072

Table 5. Spectral binning and noise whitening, with and without canonical correlation analysis (CCA) dimension reduction;
here the window radius is 4, and the top line corresponds to the w = 4 line in Table 2.



A↔B
ν SLCRA SLCRA+NMS
∞ 0.000095 0.000012
50 0.000131 0.000024
20 0.000131 0.000024
10 0.000149 0.000024
5 0.000155 0.000024

5.59* 0.000155 0.000024

A↔C
ν SLCRA SLCRA+NMS
∞ 0.000479 0.000084
50 0.000862 0.000186
20 0.001090 0.000216
10 0.000982 0.000198
5 0.001108 0.000228

4.91* 0.001120 0.000228

Table 6. For elliptically-contoured HACD, the parameter ν characterizes the multivariate-t distribution. The asterisked
values correspond to the value of ν estimated from the data, using the moment estimation formula.11 Although im-
proved performance has previously been observed using EC-HACD, and although theory supports using a distribution
(multivariate-t) that is more adapted to the data than a Gaussian, we observe here that our best performance is obtained
using the Gaussian-based HACD algorithm (i.e., effectively using ν =∞).

A↔B A→B B→A
Algorithm βx βy SLCRA SLCRA+NMS LCRA LCRA+NMS LCRA LCRA+NMS

RX 0 0 0.003627 0.000357 0.002585 0.000327 0.002340 0.000285
CC 0 1 0.002531 0.000393 0.001129 0.000196 0.001176 0.000220
CC 1 0 0.001977 0.000339 0.000737 0.000172 0.001520 0.000285

HACD 1 1 0.000095 0.000012 0.000006 0.000000 0.000089 0.000012

A↔C A→C C→A
Algorithm βx βy SLCRA SLCRA+NMS LCRA LCRA+NMS LCRA LCRA+NMS

RX 0 0 0.004695 0.000485 0.002410 0.000250 0.004134 0.000495
CC 0 1 0.002318 0.000347 0.002369 0.000298 0.002726 0.000304
CC 1 0 0.006887 0.000964 0.001428 0.000214 0.001503 0.000215

HACD 1 1 0.000479 0.000084 0.000196 0.000036 0.000268 0.000036

Table 7. Comparison of algorithms: straight anomaly detection on stacked pixels (RX), chronochrome (CC), and hyperbolic
anomalous change detection (HACD). In contrast to Table 1, we used LCRA, NMS, and CCA as part of the change
detection algorithms. Here, SLCRA is used for the symmetrical change scenarios (↔), and LCRA for the asymmetric
change scenarios (→). Circular windows of radius 5 were used for all the LCRA runs, and a square 5×5 window was
used for the NMS. CCA was used to reduce the dimension to 20 before doing the change detection. The ds-bin (de-
striped, spectrally binned) variant of the imagery was used. We used the Gaussian variants of RX, CC, and HACD. With
these various improvements, the false alarm rates reported here are much smaller than the corresponding values for the
no-frills algorithms in Table 1. A qualitative difference we observe is that for these improved change detections, HACD
outperforms CC and RX not only on the symmetric but on the asymmetric changes as well.

3.6 Elliptically-contoured change detection

If instead of assuming the background is Gaussian, one assumes that it is multivariate t-distributed with param-
eter ν, then the expression for anomalousness of change replaces Eq. (3) with

A(x,y) = Fν(ξz)− βxFν(ξx)− βyFν(ξy) (12)

where

Fν(ξ) = (d+ ν) log

(
1 +

ξ

ν − 2

)
, (13)

and d is the number of spectral channels associated with the x, y, or z image (recall that z is the stacked image,
so dz = dx + dy). In the ν → ∞ limit, the multivariate t becomes Gaussian, Fν(ξ) becomes ξ, and Eq. (12)
reverts to Eq. (3).

Table 6 compares performance of HACD with the elliptically-contoured variant EC-HACD, proposed in
Ref. [11]. Although the experiments in Ref. [11] found an advantage to using EC-HACD over HACD, we observe
here that HACD achieves the lowest false alarm rates.



4. CONCLUSIONS

Although we did not embark upon this study with a particular hypothesis in mind, we can make a few observa-
tions:

1. The Viareggio 2013 Trial provides a great dataset for change detection. It is in some ways imperfect (e.g.,
there are changes – actual changes on the ground – that are not part of the ground-truth data) but in
other ways this imperfection is useful in that it is representative of the imperfections in real data. The
co-registration is imprecise, for instance, but this enables us to evaluate different approaches for mitigating
the effects of misregistration. That there are changes in both X→Y and Y→X scenarios enables comparison
of symmetric and asymmetric algorithms in both symmetric and asymmetric scenarios.

Even a great dataset is ultimately anecdotal, however. That one algorithm outperforms another on this
dataset is not proof that it is a fundamentally better algorithm, or that it will outperform the other algo-
rithms on other datasets. A good dataset provides a nice counterpoint to theory, but is not a replacement
for it.

2. For this data set, local co-registration adjustment (LCRA) makes a big difference. When misregistration
is significant (which is more common for airborne imagery than for satellite imagery), LCRA can reduce
false alarm rates by a large factor. As expected from the theory, we found that SLCRA worked better in
symmetric scenarios, while LCRA was better for asymmetric change detection.

3. We also found that non-maximal suppression (NMS), by discounting false alarms that appear in clumps,
improved performance for this data. Further, we find that the NMS improvements are in addition to those
achieved by LCRA. Comparing Table 7 with Table 1, we find that using LCRA and NMS gives orders of
magnitude of improvement in the false alarm rate.

4. CCA is recommended. Reducing dimension from hundreds of channels down to a few tens led in some
cases (HACD) to essentially identical performance and in other cases (RX) to substantially better perfor-
mance. Using fewer channels makes the computation quicker, and would make more complicated nonlinear
approaches (e.g., using machine learning) more feasible.

5. Spectral binning and noise whitening provide multiple variants of the Viareggio data, but neither of them
had a strong effect on change detection performance.

6. We were surprised by some of the results. We expected HACD to outperform CC for symmetric scenarios,
and it did, but we did not expect it to be better for asymmetric scenarios as well. Previous studies indicated
that elliptically-contoured variants of CC and HACD would outperform their Gaussian counterparts, but
even though this data was measurably fat-tailed, we found that the Gaussian variants of the algorithms
worked best.

We only considered a limited number of algorithms – RX, CC, HACD, and their EC counterparts. Future
work might include CE and MAD algorithms as well. This dataset may also provide a useful test-bed for more
sophisticated algorithms, e.g., using kernels or perhaps more modern machine learning tools.
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